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Persistence in Reaction-Diffusion Problems: I. Bosons

Michael J. Stephen1 and Robin B. Stinchcombe2

Received September 22, 1998

We consider the persistence probability that a site, initially unoccupied, remains
unoccupied for a long time t in reaction-diffusion systems. The models con-
sidered are bosonic, i.e., multiple occupancy of the sites is allowed and can be
exactly diagonalized. The persistence shows a wide variety of time dependences
depending on the model, the dimensionality, and even the initial conditions.
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1. INTRODUCTION

Recently Derrida et al.(1, 2, 3) have discussed the persistence probability in
reaction-diffusion systems. The persistence probability, Po(t), is defined as
the probability that a given site (the origin), initially unoccupied, is never
visited during the time t. In some systems, notably the case of random
walkers undergoing the reaction A+A � o, Po(t) has an interesting power
law t&% dependence. The exponent %= 3

8 for one-dimensional Ising Glauber
dynamics. This problem has been studied by Cardy(4) using renormaliza-
tion group methods who finds %= 1

2&0(=) in a related Bose system of
random walkers undergoing annihilation in d=2&= dimensions. In the
case kA � o, k>2 a stretched exponential behavior is found in most cases.
Some problems related to that considered here are diffusion with random
traps (Lubensky(5)), diffusion controlled annihilation (Krapivsky et al.(6, 7))
and the studies of persistent spins and the zeros of Gaussian processes by
Majumdar et al.(8) and Derrida et al.(9)
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The dynamics of stochastic systems such as reaction-diffusion models
is described by a master equation governing the time evolution of the
probabilities that the system is in a given micro state. A second quantized
formulation is particularly useful to describe the diffusion and creation or
annihilation of the particles and the master equation is equivalent to a
Schro� dinger-like equation(10)

�P
�t

=&HP

where P is the state vector of the probabilities and H is the Hamiltonian.
If multiple occupancy of sites is allowed H is conveniently expressed in
terms of boson operators while if sites are restricted to single occupancy
Pauli or Fermi operators are more appropriate.

It is not necessary to use the formalism of second quantization and
the results of this paper could also be obtained from results on the first
passage time in random walks.(11) This latter formulation is used by Derrida
et al.(1, 2, 3)

The constraint that the site at the origin is never visited can be incor-
porated into the Hamiltonian by adding an impurity at the origin

H=Ho++a+
o ao (1)

where Ho is the Hamiltonian of the pure reaction-diffusion system, a+
o ao is

the number operator for particles at site o and + is the impurity potential.
The persistence probability is then

Po(t)= lim
+ � �

(F | e&Ht |I) (2)

where (F | is a complete set of final states and |I) is the initial state. For
a large class of initial states Po is expected to be independent of the initial
state for large t. However, this is not always true for all initial states and
we will give an example of such a situation where initially the particle is
confined to the vicinity of origin (referred to as the short range case). Po(t)
can also depend on the number N of sites in the system depending on the
relative magnitudes of t and N. As we are considering diffusion the inter-
esting situation is when td�2<<N (d<2) and t<<N (d>2). We have set
the diffusion constant to unity.

In this paper we consider a number of exactly solvable bosonic reac-
tion�diffusion problems. In Section 2 as an illustration a simple diffusion
problem is treated and the effects of the initial distribution is studied in 3.
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Biased diffusion is considered in 4 and a problem where deposition also
occurs is studied in 5. In subsequent papers using similar techniques we
study Fermi systems including those arising from mappings of kinetic inter-
acting spin models and stochastic interacting particle systems.

2. SIMPLE DIFFUSION

We begin by considering simple diffusing, non-interacting particles on
a d-dimensional cubic lattice of N sites. The Hamiltonian is

H= 1
2 :

nn

(a+
i &a+

j )(a i&aj)++a+
o ao (3)

We have set the diffusion constant to unity, the sum is over all
nearestneighbor pairs and the a+

i , ai are pseudo-boson(5) creation and
annihilation operators with

a+ |n) =|n+1) , a |n)=n |n&1), [ai , a+
j ]=$ij (4)

Introducing Fourier transforms

aj=
1

- N
:
k

e ik9 } }� bk , a+
j =

1

- N
:
k

eik9 } }� b+
k (5)

in (3) H becomes

H=:
k

|k b+
k bk+

+
N

:
kk$

b+
k bk$ (6)

where |k=d&cos kx } } } . It is convenient to introduce even and odd
operators

Bk=
1

- 2
(bk+b&k), Bo=bo , Ak=

1

- 2
(bk+b&k) (7)

with similar definitions for the creation operators. The odd operators A do
not couple with the impurity and do not enter the problem if we restrict the
initial distributions to be symmetric and thus will be omitted. H becomes

H=7$|kB+
k Bk+

+
N

(B+
o +21�27$kB+

k )(Bo+21�27$kBk) (8)
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where the prime means k>o. This Hamiltonian is easily diagonalized. The
impurity states have energies E: which are the solutions of

+g(E:)=1, g(=)=
1
N

:
k

1
=&|k

(9)

In terms of boson annihilation and creation operators !: , !+
: for the

impurity states

B+
k =

1

- N
:
:

u:
k!+

: , B+
o =

1

- 2N
:
:

u:
o!+

: (10)

with similar results for the annihilation operators. The coefficients

u:
k=

+C:

E:&|k
, +2C 2

:=
&2

g$(E:)
(11)

Using the orthogonality and normalization relations

1
2N

:
k

u:
k u;

k=$:; ,
1
N

:
:

u:
k u:

k$=$k, k$+$k, &k$ (12)

the Hamiltonian takes the simple form

H=:
:

E:!+
: !: (13)

The probability that the site at the origin is never visited is given by
(2). We first consider the case where there is only a single diffusing particle
(this is generalized to a finite density of non-interacting diffusing particles
below). Then

(F |=(o| :
j

aj , |I)=
1
N

:
j

a+
j | o) (14)

where |o) is the vacuum state and we have assumed that initially the
particle has equal probability of being on any site. Using (5) and (10) to
express the operators in terms of those of the impurity problems the expec-
tation value in (2) is easily evaluated and

Po1(t)= lim
+ � �

1
2N

:
:

u:2

o e&E:t, Po1(o)=1 (15)
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where the subscript 1 indicates only one particle. It is simpler to evaluate
P4 o1 and using (11)

P4 o1 (t)=& lim
+ � �

1
2N

:
:

+2C 2
:

E:
e&E:t (16)

This is conveniently written as a contour integral using the fact that
(g(=)&+&1)&1 has simple poles at ==E: in the right half plane with
residues 1�g$(E:)= 1

2 +2C 2
: . Then

P4 o1(t)=& lim
+ � �

1
2?iN |

&_+i�

&_&i�

d=e&=t

=(g(=)&+&1)
(17)

Then letting + � � and putting !=iy we get

P4 o1(t)=&
1

2?iN |
i_+i�

i_&�

dy
yg(iy)

e&iyt (18)

In the continuum limit in d dimensions

g(iy)=
1

(2?)d |
?

&?

d dk
iy&|k

(19)

When t is large we require g(iy) for small y and it takes different forms
depending on dimensionality.

(a) d>2. The integral in (19) converges when y=o and we can
make the small y replacement g(iy)=&Id where Id is Watsons integral

Id=
1

(2?)d |
?

&?

d dk
d&cos kx } } }

(20)

Then

P4 o1(t)=&
1

NId
, Po1(t)=1&t�NId (21)

(b) d=2. Since y is small we use |k=k2�2 in (19) and introduce a
cut off km which gives g(iy)=&(1�2?) ln(ik2

m �2y). Substitution in (18)
gives

P4 o1(t)=&
2?

N ln t
, Po1(t)=1&

2?t
N ln t

(22)

where we have only kept the leading logarithmic terms.
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(c) d=1. Again setting |k=k2�2 we find g(iy)=&ei?�4�- 2y which
leads to

P4 o1(t)=&
1
N \ 2

?t+
1�2

, Po1(t)=1&
2
N \2t

? +
1�2

(23)

It is clear that these results are only valid when td�2<N (d<2) and
t<N (d>2) as discussed in Section 1.

These results are readily extended to the case where there is initially a
finite density \ of diffusing particles per site. Then

(F |=(0| \:
j

aj+
\N

, |I)=CN \ 1

- N
:
j

a+
j +

\N

|o) (24)

where the normalization constant C &1
N =N\N�21 (1+\N ). It is easily

shown that

Po\(t)=(Po1)\N (25)

where Po1 are the above results for a single diffusing particle. Then letting
N � � we find

Pop=e&\t�Id d>2

=e&2?\t� ln t d=2

=e&2\(2t�?)1�2 d=1 (26)

The persistence probability depends on dimensionality and the
exponents are the trivial ones expected in random walk problems.

3. EFFECT OF INITIAL DISTRIBUTION

In this section we choose an initial distribution in which all the par-
ticles are within a finite distance of the origin. In the previous section
initially the particles were distributed uniformly over the whole lattice.
Considering a single diffusing particle the final state is as before in (14) and

|I)=:
j

;ja+
j |o) , :

j

; j=1, ;j=;& j (27)
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The ;j must all be positive. The distribution is symmetric around the
origin and normalized. In terms of impurity operators (10)

|I)=
1

- 2N
:
k, :

u:
k;� k!+

: |o) (28)

where ;� k is the Fourier transform of ; j . In the + � � limit we have
�k u:

k=o and we can replace (28) by

|I)=
1

- 2N
:
k

u:
k(;� k&;� o) !+

: |o) (29)

When this is substituted in (2) we find

Po1s(t)=
1

2N
:
:, k

u:
o u:

k(;� k&;� o) e&E: t (30)

where the subscript s indicates the short range case. As an example we take
;j=(1�2d ) �n $j, n , where n are all the nearest-neighbor sites to the origin.
Then ;� o&;� k=|k �d and using (11) we can write (30) in the form

Po1s(t)=
1

2d
:
:

+2C 2
:

E: \1&
1
N

:
k

E:

E:&|k+ e&E:t (31)

The second term in the bracket is of order +&1 and so we can neglect
it. Then

Po1s(t)=
1

2d
:
:

+2C 2
:

E:
e&E:t (32)

Comparision with (16) shows that Po1s(t)=(&N�d ) P4 o1(t) which gives
the results

Po1s(t)=
1

dId
d>2

=
?

ln t
d=2

=\ 2
?t +

1�2

d=1 (33)
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For d>2 the particle has a probability 1�dId of reaching the origin in
a short time or otherwise diffuses away. d=2 is the marginal case and in
d=1 the persistence probability decays to zero with exponent 1

2 .

4. BIASED DIFFUSIONS

We consider a one-dimensional system in which the hopping rate to
the right is greater than that to the left. The Hamiltonian is now

H=:
k

|kbb+
k bk+

+
N

:
kk$

b+
k bk$ (34)

where |kb=|k+i2 sin k. 2 is the anisotropy in the hopping rate and we
use the subscript b to distinguish the biased case. The separation into even
and odd states no longer occurs but H can still be diagonalized by intro-
ducing impurity states with energies E: which are solutions of

+gb(E:)=1, gb(=)=
1
N

:
k

1
=&|kb

(35)

The energies E: are either real or occur in complex conjugate pairs.
In terms of the creation and annihilation operators !+

: , !: for the impurity
states.

b+
k =

1

- N
:
:

u:
kb !+

: , bk=
1

- N
:
:

u:
kb !: (36)

Where ukb is given by a generalization of (11) in which |k is replaced
by |kb .

Using the orthogonality relations

1
N

:
k

u:
kb u;

kb=$:; ,
1
N

:
:

u:
kbu:

k$b=$kk$ (37)

the Hamiltonian takes the form

H=:
:

E:!+
: !: (38)

We choose the same initial and final states as in the unbiased case (14)
and find

P4 o1b(t)=&
1

2?iN |
i_+�

i_&�

dy
ygb(iy)

e&iyt (39)
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of exactly the same form as in (18). In this one-dimensional case for small y,
gb(iy)=&1�- 22&2iy and after substitution in (39) and distortion of the
contour

P4 01b(t)=&
2
N _1+

1
? |

�

o

r1�2 dr
1+r

e&(22�2)(1+r)& (40)

For 22t<1 this reduces to (23) and for 22t>1

P4 01b(t)=&
2
N _1+\2

?+
1�2 1

(22t)3�2 e&22t�2& (41)

The second term is negligible and P01b(t)=1&(2t�N ). For a finite
density of particles

Po\b(t)=e&2\t, d=1 (42)

and so bias causes an exponential decay rather than the stretched exponen-
tial form in (26).

5. DEPOSITION

In this section we consider the effects of deposition of particles, in
addition to diffusion, on the persistence. The Hamiltonian of the diffusion-
deposition system is

Ho= 1
2 :

kk

(a+
i &a+

j )(ai&a j)&= :
i

(a+2
i &1) (43)

Pairs of particles are deposited at a rate = at random on the sites in
addition to the diffusion. This can also be regarded as a growth model in
which particles are deposited on the sites to form columns with height
proportional to the number of particles and particles can hop between
neighboring columns.

Beginning with the vacuum state at t=0 the average number of par-
ticles per site is 2=t. This model is quadratic in boson operators and the
Hamiltonian (43) together with the impurity potential +a+

o ao can be
diagonalized by generalizing the methods used in Section 2. A Bogoliubov
transformation is involved because of the particle creation term in Ho

(Eq. (43)). Nevertheless, the impurity state energies and amplitudes can be
given in forms allowing the evaluation of the persistence probability via
contour integral procedures similar to those used in 2. Choosing the initial
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state to be the vacuum the persistence probability for large t and N � �
is found to be

Po(t)=exp \&
=t2

Id + d>2

=exp \&2?=t2

ln t + d=2

=exp \&
8
3

= \t3

?+
1�2

+ d=1 (44)

As expected the deposition leads to a more rapid decay of the per-
sistence probability Po(t)te&t$

with $=2 for d>2 with a log correction
for d=2 and $=3�2 for d=1. The form is like that without deposition
(Eq. (26)) with \ replaced by =t.

6. CONCLUSIONS

We have studied the persistence probability, Po(t), in some exactly
soluble bosonic reaction-diffusion systems. The time dependence of Po(t),
not surprisingly, shows different behavior depending on the model and the
dimensionality. Thus for a simple diffusing system at finite density it is a
simple or stretched exponential. If deposition is included it decays more
rapidly with time. If initially all the particles are within a short distance of
the persistent site a different behavior ensues.

Generalized combinations of processes could be treated by similar
procedures. The methods also apply to certain systems with interactions:
for example one-dimensional Ising Glauber dynamics with or without bias
can be mapped to free fermions. This, and related problems with per-
sistence behavior will be treated elsewhere.
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